Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.963
Filtrar
1.
Int Immunopharmacol ; 116: 109729, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37800555

RESUMO

Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3ß/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos , Macrófagos , Neoplasias , Ranitidina , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ranitidina/farmacologia , Ranitidina/uso terapêutico , Células RAW 264.7 , Transdução de Sinais , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Vacinas , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico
2.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
3.
Biochem Biophys Res Commun ; 596: 63-70, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114586

RESUMO

Owing to lacking protective effect of estrogen, OVX mice have higher risk of non-alcoholic fatty liver disease compared with normal female mice, when fed with high fat diet. Our study was to explore how estrogen protect against nonalcoholic steatohepatitis in female mice. We found that, lacking estrogen, M1 macrphages was activated and promoted steatohepatitis in obese OVX mice. And, ERα was responsible for estrogen to inhibit M1 macrphages activation and steatohepatitis. ERα knockdown aggravated M1 macrophages infiltration by transcriptionally upregulated its CCR2 expression. CCR2 antagonist effectively improved nonalcoholic steatohepatitis, ER stress and insulin resistance in ERα knockdown obese female mice. These results demonstrated ERα mediated M1 macrophages activation played a key role in nonalcoholic steatohepatitis.


Assuntos
Receptor alfa de Estrogênio/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/classificação , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ovariectomia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Sci Rep ; 12(1): 1912, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115604

RESUMO

Trained immunity and tolerance are part of the innate immune memory that allow innate immune cells to differentially respond to a second encounter with stimuli by enhancing or suppressing responses. In trained immunity, treatment of macrophages with ß-glucan (BG) facilitates the production of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. For the tolerance response, LPS stimulation leads to suppressed inflammatory responses during subsequent LPS exposure. Epigenetic reprogramming plays crucial roles in both phenomena, which are tightly associated with metabolic flux. In this study, we performed a screening of an epigenetics compound library that affects trained immunity or LPS tolerance in macrophages using TNFα as a readout. Among the 181 compounds tested, one compound showed suppressive effects, while 2 compounds showed promoting effects on BG-trained TNFα production. In contrast, various inhibitors targeting Aurora kinase, histone methyltransferase, histone demethylase, histone deacetylase and DNA methyltransferase showed inhibitory activity against LPS tolerance. Several proteins previously unknown to be involved in innate immune memory, such as MGMT, Aurora kinase, LSD1 and PRMT5, were revealed. Protein network analysis revealed that the trained immunity targets are linked via Trp53, while LPS tolerance targets form three clusters of histone-modifying enzymes, cell division and base-excision repair. In trained immunity, the histone lysine methyltransferase SETD7 was identified, and its expression was increased during BG treatment. Level of the histone lysine demethylase, LSD1, increased during LPS priming and siRNA-mediated reduction resulted in increased expression of Il1b in LPS tolerance. Taken together, this screening approach confirmed the importance of epigenetic modifications in innate immune memory and provided potential novel targets for intervention.


Assuntos
Epigênese Genética/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Proliferação de Células , Células Cultivadas , Feminino , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Fator de Necrose Tumoral alfa/metabolismo , beta-Glucanas/imunologia , beta-Glucanas/farmacologia
5.
Toxicol Appl Pharmacol ; 438: 115910, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134435

RESUMO

Environmental exposure to formaldehyde is known to be associated with cancers and many other diseases. Although formaldehyde has been classified as a group I carcinogen, the molecular mechanisms of its carcinogenicity are still not fully understood. Formaldehyde is also involved in the folate-driven one­carbon metabolism, and excess amount of formaldehyde was found to interfere with other metabolic pathways including glycolysis, which can enhance Warburg effect and induce immunosuppression in tumor microenvironment. Therefore, different tumor cells and THP-1 derived macrophages were utilized to explore the metabolism-related effects induced by formaldehyde at environmentally relevant concentrations. Significant increases of glucose uptake, glycolysis levels, HIF-1α signaling and methylglyoxal production were observed in tumor cells treated with 20 and 50 µM formaldehyde for 24 h, and the overproduced methylglyoxal in the conditioned medium collected from the tumor cells treated with formaldehyde triggered macrophage polarization towards M2 cells. Myricetin, a flavonol scavenging methylglyoxal, reversed the polarization of macrophages induced by methylglyoxal at 50 µM. These results not only provided essential evidences to reveal the molecular mechanisms of Warburg effect and metabolism-related immunosuppression related to formaldehyde exposure, but also indicated that methylglyoxal could be utilized as a target for therapeutic treatment or prevention of formaldehyde-induced immunotoxicity.


Assuntos
Formaldeído/efeitos adversos , Aldeído Pirúvico/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Efeito Warburg em Oncologia/efeitos dos fármacos , Células A549 , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Ativação de Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Th1 , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
6.
Oxid Med Cell Longev ; 2022: 4636618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126813

RESUMO

Inflammatory bowel diseases (IBDs) constitute a group of chronic intestinal conditions prominently featuring deranged metabolism. Effective pharmacological treatments for IBDs are lacking. Isosteviol sodium (STV-Na) exhibits anti-inflammatory activity and may offer therapeutic benefits in chronic colitis. However, the associated mechanism remains unclear. This study is aimed at exploring the therapeutic effects of STV-Na against chronic colitis in terms of metabolic reprogramming and macrophage polarization. Results show that STV-Na attenuated weight loss and colonic pathological damage and restored the hematological and biochemical parameters in chronic colitis mice models. STV-Na also restored intestinal permeability by increasing the goblet cell numbers, which was accompanied by lowered plasma lipopolysaccharide and diamine oxidase levels. Metabolomic analysis highlighted 102 candidate biomarkers and 5 vital pathways that may be crucial in the potential pharmacological mechanism of STV-Na in regulating intestinal inflammation and oxidative stress. These pathways were glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, the pentose phosphate pathway, and phosphonate and phosphinate metabolism. Furthermore, STV-Na significantly decreased M1 macrophage polarization in the spleen and colon. The mRNA and protein levels of IL-1ß, TNF-α, and NF-κB/p65 in colonic tissue from the colitis mice were decreased after the STV-Na treatment. Overall, STV-Na could alleviate chronic colitis by suppressing oxidative stress and inflammation levels, reprogramming the metabolic profile, inhibiting macrophage polarization, and suppressing the NF-κB/p65 signaling pathway. STV-Na remains a promising candidate drug for treating IBDs.


Assuntos
Colite/patologia , Diterpenos do Tipo Caurano/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Doença Crônica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Diterpenos do Tipo Caurano/uso terapêutico , Glicerofosfolipídeos/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Via de Pentose Fosfato , Fenilalanina/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
7.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216420

RESUMO

Hydrocephalus is a complicated disorder that affects both adult and pediatric populations. The mechanism of hydrocephalus development, especially when there is no mass lesion present causing an obstructive, is poorly understood. Prior studies have demonstrated that spontaneously hypertensive rats (SHRs) develop hydrocephalus by week 7, which was attenuated with minocycline. The aim of this study was to determine sex differences in hydrocephalus development and to examine the effect of minocycline administration after hydrocephalus onset. Male and female Wistar-Kyoto rats (WKYs) and SHRs underwent magnetic resonance imaging at weeks 7 and 9 to determine ventricular volume. Choroid plexus epiplexus cell activation, cognitive deficits, white matter atrophy, and hippocampal neuronal loss were examined at week 9. In the second phase of the experiment, male SHRs (7 weeks old) were treated with either saline or minocycline (20 mg/kg) for 14 days, and similar radiologic, histologic, and behavior tests were performed. Hydrocephalus was present at week 7 and increased at week 9 in both male and female SHRs, which was associated with greater epiplexus cell activation than WKYs. Male SHRs had greater ventricular volume and epiplexus cell activation compared to female SHRs. Minocycline administration improved cognitive function, white matter atrophy, and hippocampal neuronal cell loss. In conclusion, while both male and female SHRs developed hydrocephalus and epiplexus cell activation by week 9, it was more severe in males. Delayed minocycline treatment alleviated hydrocephalus, epiplexus macrophage activation, brain pathology, and cognitive impairment in male SHRs.


Assuntos
Plexo Corióideo/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Minociclina/farmacologia , Animais , Feminino , Hidrocefalia/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983841

RESUMO

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferons/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon-alfa/farmacologia , Interferons/genética , Interferons/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Domínios Proteicos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
9.
Eur J Pharmacol ; 918: 174715, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026193

RESUMO

Evidence has demonstrated that a new class of anti-diabetic drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors, could exert beneficial effects on atherosclerotic complications of diabetes. Atherosclerosis is widely accepted as an inflammatory disease. Therefore, we aimed to assess the direct anti-inflammatory effects of SGLT2 inhibitors dapagliflozin (DAPA) on two cell types involved in the process of atherogenesis. Human umbilical vein endothelial cells (HUVECs) and macrophages were exposed to DAPA and lipopolysaccharide (LPS 20 ng/mL) for 24 h under normal (5.5 mmol/L, NG) or high glucose (25 mmol/L, HG) conditions. Then, levels of TLR-4/p-NF-κB, inflammatory cytokines, inflammation-related miR-146a and miR-155 as well as alteration in the ratio of M1/M2 macrophage polarization was assessed. DAPA (0.5 µM) could significantly attenuate LPS-induced TLR-4 overexpression (23.9% and 33.1% under NG and HG conditions in HUVECs and 53.3% and 52.4% under NG and HG states in macrophages, respectively). NF-κB p65 phosphorylation was also significantly decreased to 30.1% under NG condition in HUVECs and 51.9% and 34.5% under NG and HG states in macrophages by 0.5 µM DAPA. Moreover, DAPA elevated expression levels of anti-inflammatory miR-146a, while values of miR-155 decreased in those cells. DAPA also caused a shift from inflammatory M1 macrophages toward M2-dominant macrophages. These data suggest that regardless of glucose concentrations, DAPA could exert direct anti-inflammatory effects, at least partly, by inhibiting the expression of TLR-4 and activation of NF-κB along with the secretion of pro-inflammatory mediators.


Assuntos
Aterosclerose , Compostos Benzidrílicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Macrófagos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
10.
Nat Commun ; 13(1): 110, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013252

RESUMO

Microbe-based cancer immunotherapy has recently emerged as a hot topic for cancer treatment. However, serious limitations remain including infection associated side-effect and unsatisfactory outcomes in clinic trials. Here, we fabricate different sizes of nano-formulations derived from yeast cell wall (YCW NPs) by differential centrifugation. The induction of anticancer immunity of our formulations appears to inversely correlate with their size due to the ability to accumulate in tumor-draining lymph node (TDLN). Moreover, we use a percolation model to explain their distribution behavior toward TDLN. The abundance and functional orientation of each effector component are significantly improved not only in the microenvironment in tumor but also in the TDLN following small size YCW NPs treatment. In combination with programmed death-ligand 1 (PD-L1) blockade, we demonstrate anticancer efficiency in melanoma-challenged mice. We delineate potential strategy to target immunosuppressive microenvironment by microbe-based nanoparticles and highlight the role of size effect in microbe-based immune therapeutics.


Assuntos
Imunoterapia/métodos , Linfonodos/efeitos dos fármacos , Melanoma Experimental/terapia , Nanopartículas/administração & dosagem , Saccharomyces cerevisiae/química , Neoplasias Cutâneas/terapia , Aloenxertos , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Parede Celular/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Injeções Intralesionais , Linfonodos/imunologia , Linfonodos/patologia , Ativação de Macrófagos/efeitos dos fármacos , Melanoma Experimental/genética , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Quinase Syk/antagonistas & inibidores , Quinase Syk/genética , Quinase Syk/imunologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
Nat Commun ; 13(1): 160, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013289

RESUMO

Immune response and new tissue formation are important aspects of tissue repair. However, only a single aspect is generally considered in previous biomedical interventions, and the synergistic effect is unclear. Here, a dual-effect coating with immobilized immunomodulatory metal ions (e.g., Zn2+) and osteoinductive growth factors (e.g., BMP-2 peptide) is designed via mussel adhesion-mediated ion coordination and molecular clicking strategy. Compared to the bare TiO2 group, Zn2+ can increase M2 macrophage recruitment by up to 92.5% in vivo and upregulate the expression of M2 cytokine IL-10 by 84.5%; while the dual-effect of Zn2+ and BMP-2 peptide can increase M2 macrophages recruitment by up to 124.7% in vivo and upregulate the expression of M2 cytokine IL-10 by 171%. These benefits eventually significantly enhance bone-implant mechanical fixation (203.3 N) and new bone ingrowth (82.1%) compared to the bare TiO2 (98.6 N and 45.1%, respectively). Taken together, the dual-effect coating can be utilized to synergistically modulate the osteoimmune microenvironment at the bone-implant interface, enhancing bone regeneration for successful implantation.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Interface Osso-Implante/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Titânio/farmacologia , Zinco/farmacologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Bivalves/química , Diferenciação Celular/efeitos dos fármacos , Fêmur/citologia , Fêmur/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/imunologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Precursores de Proteínas/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
12.
ACS Appl Mater Interfaces ; 14(4): 5090-5100, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060376

RESUMO

Pulmonary delivery of anti-inflammatory siRNA presents a promising approach for localized therapy of acute lung injury (ALI), while polycationic vectors can be easily trapped by the negatively charged airway mucin glycoproteins and arbitrarily internalized by epithelial cells with nontargetability for immunological clearance. Herein, we report a material, the dopamine (DA)-grafted hyaluronic acid (HA-DA), coating on an anti-TNF-α vector to address these limitations. HA-DA was simply synthesized and facilely coated on poly(ß-amino ester) (BP)-based siRNA vectors via electrostatic attraction. The resulting HA-DA/BP/siRNA displayed significantly enhanced mucus penetration, attributable to the charge screen effect of HA-DA and the bioadhesive nature of the grafting DA. After transmucosal delivery, the nanosystem could target diseased macrophages via CD44-mediated internalization and rapidly escape from endo/lysosomes through the proton sponge effect, resulting in effective TNF-α regulation. Meanwhile, DA modification endowed the coating material with robust antioxidative capability to scavenge a broad spectrum of reactive oxygen/nitrogen species (RONS), which protected the lung tissue from oxidative damage and synergized with anti-TNF-α to inhibit a cytokine storm. As a result, a remarkable amelioration of ALI was achieved in a lipopolysaccharide (LPS)-stimulated mice model. This study provides a multifunctional coating material to facilitate pulmonary drug delivery for the treatment of lung diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Dopamina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Ácido Hialurônico/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Dopamina/análogos & derivados , Dopamina/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Humanos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/síntese química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muco/metabolismo , Células NIH 3T3 , Nanopartículas/química , Nanopartículas/uso terapêutico , Polímeros/síntese química , Polímeros/química , Células RAW 264.7 , RNA Interferente Pequeno/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores
13.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053343

RESUMO

Formyl peptide receptors (Fprs) are a G-protein-coupled receptor family mainly expressed on leukocytes. The activation of Fpr1 and Fpr2 triggers a cascade of signaling events, leading to leukocyte migration, cytokine release, and increased phagocytosis. In this study, we evaluate the effects of the Fpr1 and Fpr2 agonists Ac9-12 and WKYMV, respectively, in carrageenan-induced acute peritonitis and LPS-stimulated macrophages. Peritonitis was induced in male C57BL/6 mice through the intraperitoneal injection of 1 mL of 3% carrageenan solution or saline (control). Pre-treatments with Ac9-12 and WKYMV reduced leukocyte influx to the peritoneal cavity, particularly neutrophils and monocytes, and the release of IL-1ß. The addition of the Fpr2 antagonist WRW4 reversed only the anti-inflammatory actions of WKYMV. In vitro, the administration of Boc2 and WRW4 reversed the effects of Ac9-12 and WKYMV, respectively, in the production of IL-6 by LPS-stimulated macrophages. These biological effects of peptides were differently regulated by ERK and p38 signaling pathways. Lipidomic analysis evidenced that Ac9-12 and WKYMV altered the intracellular lipid profile of LPS-stimulated macrophages, revealing an increased concentration of several glycerophospholipids, suggesting regulation of inflammatory pathways triggered by LPS. Overall, our data indicate the therapeutic potential of Ac9-12 and WKYMV via Fpr1 or Fpr2-activation in the inflammatory response and macrophage activation.


Assuntos
Inflamação/patologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Receptores de Formil Peptídeo/agonistas , Animais , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Lipidômica , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/patologia , Células RAW 264.7 , Receptores de Formil Peptídeo/metabolismo
14.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35027468

RESUMO

Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn's Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF's anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.


Assuntos
Macrófagos , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Inibidores do Fator de Necrose Tumoral/farmacologia
15.
Sci Rep ; 12(1): 691, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027642

RESUMO

In a previous study from our group, argon has shown to significantly attenuate brain injury, reduce brain inflammation and enhance M2 microglia/macrophage polarization until 7 days after ischemic stroke. However, the long-term effects of argon have not been reported thus far. In the present study, we analyzed the underlying neuroprotective effects and potential mechanisms of argon, up to 30 days after ischemic stroke. Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion demonstrated long-term neuroprotective effect by preserving the neurons at the ischemic boundary zone 30 days after stroke. Furthermore, the excessive microglia/macrophage activation in rat brain was reduced by argon treatment 30 days after ischemic insult. However, long-lasting neurological improvement was not detectable. More sensorimotor functional measures, age- and disease-related models, as well as further histological and molecular biological analyses will be needed to extend the understanding of argon's neuroprotective effects and mechanism of action after ischemic stroke.


Assuntos
Argônio/administração & dosagem , Argônio/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Fármacos Neuroprotetores , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/imunologia , Ratos , Fatores de Tempo , Tempo para o Tratamento
16.
J Biol Chem ; 298(2): 101501, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929172

RESUMO

Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1ß and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.


Assuntos
Glutaratos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos , Macrófagos , Glutaratos/metabolismo , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo
17.
Int Immunopharmacol ; 102: 108395, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915410

RESUMO

Septic acute kidney injury (AKI) always accounts for high mortality of septic patients in ICU. Due to its not well understood mechanism for infection and immune-regulation in kidney dysfunction, there is a lack of effective therapy without side effects. Dimethyl fumarate (DMF) as an immunomodulatory molecule has been approved for treatment to multiple sclerosis. However, the therapeutic effect and immunomodulatory role underlying DMF action in septic AKI is unclear. This study aimed to elucidate the role of DMF in lipopolysaccharide (LPS)-induced septic AKI involving macrophage regulation. In current study, we administered DMF by oral gavage to mice with LPS-induced AKI, then harvested serum and kidney at three different time points. We further isolated Bone marrow-derived macrophages (BMDMs) from mice and stimulated them with LPS followed by DMF treatment. To explore immunomodulatory role of DMF in macrophages, we depleted macrophages in mice using liposomal clodronate after DMF treatment upon LPS-induced septic AKI. Then we observed that DMF attenuated renal dysfunction and murine pathological kidney injury after LPS injection. DMF could inhibit translocation of phosphorylated NF-κB p65 and suppress macrophage activation in LPS-induced AKI. DMF reduced the secretion of TNF-α and IL-6 whereas increased the secretion of IL-10 and Arg-1 in BMDMs after LPS stimulation. DMF also inhibited NF-κB p65 phosphorylation in BMDMs after LPS stimulation. Importantly, the effect of DMF against LPS-induced AKI, macrophage activation, and translocation of phosphorylated NF-κB p65 was impaired upon macrophage depletion. Thus, DMF could attenuate LPS-induced septic AKI by suppression of NF-κB p65 phosphorylation and macrophage activation. This work suggested the potential therapeutic role of DMF for patients in ICU threatened by septic AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Glutamatos/uso terapêutico , Ativação de Macrófagos/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fosforilação
18.
J Pharmacol Sci ; 148(1): 116-124, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924115

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease with increased M1 macrophages. The classical activated M1 macrophages produce various cytokines to control inflammation. Wilforlide A is a natural product that displays anti-inflammatory activities. However, the effect of Wilforlide A on RA progression and the potential mechanisms are unclear. Herein, the collagen-induced arthritis (CIA) mouse was used as an experimental model of RA. The administration of Wilforlide A reduced clinical scores, joint swelling and histological damage in ankle joints of RA mice. The secreted pro-inflammatory factors (MCP1, GM-CSF and M-CSF) and M1 biomarker iNOS in synovium were inhibited by Wilforlide A. In vitro, macrophages deriving from THP-1 cells were stimulated with LPS/IFN-γ to mimic M1 polarization. Similarly, Wilforlide A blocked macrophages polarizing towards M1 subsets. The in vitro results demonstrated that Wilforlide A suppressed LPS/IFN-γ-induced TLR4 upregulation, IκBα degradation and NF-κB p65 activation. In addition, TAK242 (a TLR4 inhibitor) treatment caused a similar inhibitory effect on M1 polarization with Wilforlide A, whereas it was less than the combination of TAK242 and Wilforlide A. Therefore, this work supports that Wilforlide A ameliorates M1 macrophage polarization in RA, which is partially mediated by TLR4/NF-κB signaling pathway inactivation.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Ácido Oleanólico/análogos & derivados , Fitoterapia , Animais , Anti-Inflamatórios , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos DBA , NF-kappa B/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Receptor 4 Toll-Like/metabolismo
19.
Int Immunopharmacol ; 102: 108413, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34891003

RESUMO

OBJECT: Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS: ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS: Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION: These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.


Assuntos
Artesunato/uso terapêutico , Aterosclerose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Polaridade Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
20.
Carbohydr Polym ; 277: 118891, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893293

RESUMO

When organic polymer-based drug nanocarriers become concentrated in macrophages, their influence on macrophage polarization has been rarely reported. This study prepared chitosan-based nanoparticles (CNs, 181.5 nm, +14.83 mV) and detected their impacts on macrophage reprogram. RT-PCR results showed in M1-like RAW264.7 cells (Mφ1), CNs decreased CD86 and iNOS expressions by 53.8% and 57.1%, and increased Arg-1 and IL-10 by 642.9% and 102.1%; in M2-like cells (Mφ2), CNs reduced Arg-1 and MR expressions by 70.7% and 93.0%, but increased CD86, iNOS and TNF-α by 290.4%, 86.2% and 728.6%; these results, consistent with cytokine secretions and surface CD86/CD206 expressions, showed CNs polarized Mφ1 and Mφ2 toward opposite type so as to improve the macrophage polarization homeostasis. In CCl4-induced mouse liver injury model, CNs reduced the hepatic Mφ1/Mφ2 ratio from 1.1 (model group) to 0.3, and then reduced the serum AST and ALT level by 42.3% and 39.0%; in mouse model of hepatocellular carcinoma, CNs decreased the number of CD163-positive cells and increased CD86-positive ones in tumor, and subsequently inhibited the tumor growth and metastasis. This study suggests CNs can improve the phenotype homeostasis of macrophages and subsequently promote the treatment of certain diseases such as liver injury and tumor.


Assuntos
Antineoplásicos/farmacologia , Quitosana/farmacologia , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Animais , Antineoplásicos/química , Células Cultivadas , Quitosana/administração & dosagem , Quitosana/química , Homeostase/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Tamanho da Partícula , Fenótipo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...